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ABSTRACT
Effective conservation requires an understanding of drivers of a species' distribution as well as long-term changes in their dis-
tribution. In recent decades, advances in data collection and analysis have allowed researchers to integrate a wide range of 
information to model species distributions, particularly by allowing presence-only data and detection-nondetection data to be 
formally combined in integrated species distribution models (ISDMs). However, these models are rarely used to investigate long-
term trends, which are important in evaluating a species' status. Here, we use historical presence-only data of river otters (Lontra 
canadensis; 366 latrine locations from 1999 to 2007 and 105 locations of road-killed individuals recorded from 1999 to 2020) and 
919 detection-nondetection surveys from 230 sites between 2021 and 2023 to understand the current distribution of river otters 
in Rhode Island, USA, as well as the changes in river otter distribution over the past two decades. We found that river otters were 
strongly associated with key habitat features such as streams and water, positively associated with urban areas, and tolerant of 
some contaminants, such as lead. Furthermore, despite uncertainties in historical river otter occurrence, we found clear sup-
porting evidence that river otter intensity of use had declined from 1999 to 2023. This decline occurred despite being protected 
from harvest and in contrast to range expansions in other parts of the northeastern USA throughout the second half of the 20th 
century. Our results suggest the utility of this approach to detect declines in species for which historical data are available and 
a need for better understanding the cause of river otter declines. Where monitoring consists of opportunistically collected data, 
species conservation could benefit by continuing to collect these data as well as introducing designed surveys, as this would allow 
better integration of data types, improving trend estimation and reducing the amount of (typically more expensive) designed 
surveys needed.

1   |   Introduction

Animal conservation relies on accurate information about a 
species' distribution and population dynamics. This provides 
information to wildlife and land managers on where to target 
interventions to support species occurrence and to understand 

when habitat or population interventions may be required 
(Elith and Leathwick  2009). In recent decades, advances in 
data collection (e.g., remote camera trapping, widespread citi-
zen science programs, passive audio recording) and methodol-
ogy (e.g., occupancy modeling (MacKenzie et al. 2002), species 
distribution models (SDMs; Elith and Leathwick  2009), and 
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integrated species distribution models (ISDMs; Dorazio  2014)) 
have allowed more rigorous evaluations of the relationship be-
tween the locations in which species are found and remotely 
mapped landscape features. In particular, the ability to use 
ISDMs to combine presence-only data from disparate sources 
with detection-nondetection data allows researchers to leverage 
the wider coverage in both time and space typical of opportu-
nistically collected data (which are typically presence-only) 
and the greater confidence in the results from designed stud-
ies (Dorazio 2014; Koshkina et al. 2017; Fletcher Jr. et al. 2019; 
Miller et al. 2019).

To date, most ISDMs have leveraged large data sets from a 
short time span, allowing inference to be a static snapshot of a 
species' distribution (Miller et al. 2019; Fletcher Jr. et al. 2019; 
Emmet et al. 2023), or have used historical data and assumed 
that the species distribution is constant over time (e.g., Schank 
et al. 2017; Landau et al. 2022; but see e.g., Twining et al. 2024; 
Strebel et al. 2022 for examples with year included as a random 
effect). Historical data are often widely available through mu-
seum records and online databases; less available, but just as 
abundant, are data on species presence, opportunistically col-
lected by individuals or by wildlife agencies. Typically, each of 
these types of opportunistically collected data has a sampling 
bias (such as towards area more frequently included in check-
lists) that must be corrected for to avoid biased estimators of 
species distribution (Rota et al. 2011; Dorazio 2014; Fletcher Jr. 
et al. 2019). Combining historical records and designed studies 
can improve the precision of SDMs by better accounting for im-
perfect detection in the historical data (Miller et al. 2019); how-
ever, if the species' distribution has changed over the time period 
in which the different data sets were collected, the assumption 
of a static distribution may lead to inaccurate or imprecise es-
timates. Additionally, changes in a species distribution are of 
interest in themselves; declines in species' area of occupancy 
or extent of occurrence are criteria for listing on the IUCN Red 
List (IUCN  2001) and changes in the response of the species 
to landscape features may reflect important changes in the 
species' ecology that are relevant to its conservation. Dynamic 
occupancy models (MacKenzie et  al.  2003) require systematic 
sampling done repeatedly over time, which can be expensive 
and often do not occur over long time periods (e.g., decades). 
However, many managers have access to historical records 
that are less systematically collected and have or could obtain 
records from designed surveys over shorter time periods; this 
provides an opportunity for managers to combine these sources 
of information to estimate trends for many species whose con-
servation status is not well understood. Although rarely used 
for this purpose, ISDMs can be effective at analyzing changes 
in the distributions of species with long time series of spatial 
data but which lack repeated, standardized surveys across time 
(Grattarola et al. 2023).

We focus here on applying an ISDM to river otters (Lontra 
canadensis) in Rhode Island, USA. River otters are a common, 
semi-aquatic mustelid found across much of North America 
(Melquist et  al.  2003). Although river otters are primarily 
aquatic, they are able to cross land barriers between water bod-
ies and watersheds and consume large amounts of fish, bivalves, 
and other aquatic prey, traits which make them important pred-
ators within freshwater aquatic habitats (Melquist et  al.  2003; 

Cote et al. 2008). Across much of their distribution throughout 
North America, river otters are trapped for their fur, which con-
tributed to declines in parts of their native range into the mid-
twentieth century (Melquist et  al.  2003; Roberts et  al.  2020). 
More recently, river otter populations have rebounded in many 
parts of their range and expanded into areas they were previ-
ously extirpated from, such as the southwest U.S. (Melquist 
et al. 2003; Polechla et al. 2004; Converse et al. 2014), Midwest 
U.S. (Raesly  2001; Melquist et  al.  2003; Ellington et  al.  2018), 
and Long Island, New York (Bottini 2019). River otters are typ-
ically found in wetland habitats, are cryptic, and often occur at 
low densities (Day et al. 2016). As such, they are unlikely to be 
detected in line transect or camera trapping studies intended to 
capture a wide range of species if these studies are not designed 
to include wetland areas.

In the state of Rhode Island, river otters are widespread, but 
their population status is unknown. The intentional harvest 
of otters was banned in the state in 1971, which has allowed 
the population to be relatively unimpacted by trapping but has 
also made the river otter population more difficult to monitor 
since it limits the availability of harvest data, the primary data 
source available for many furbearers in the state. However, 
since 1999, state biologists have kept opportunistic records 
of two types of river otter data: latrine locations and road-
kill locations. Here, we combine these historical data sources 
with detection-nondetection surveys conducted in 2021–2023 
to model the relationship between river otter occupancy and 
landcover covariates and to estimate changes in otter oc-
cupancy over two decades. Our objectives were to aid river 
otter conservation by identifying areas of the state, landcover 
classes, and attributes of water bodies that were strongly asso-
ciated with otter presence and by evaluating river otter occur-
rence trends in Rhode Island, which may inform managers' 
conservation decisions.

2   |   Methods

2.1   |   Site Selection

We sampled sites for semi-aquatic mammals (river otters, beavers 
(Castor canadensis), and muskrats (Ondatra zibethicus)) through-
out Rhode Island's contiguous terrestrial landscape, including 
all parts of the state draining into Block Island Sound (exclud-
ing Block Island) and Narragansett Bay via the Blackstone River 
or streams to its west and south (Figure 1). We established a grid 
covering the sampling area with each grid cell being square with 
sides of 0.5 km in length, which roughly corresponded to the 
home range size for beavers and muskrats (Allen  1982; Ahlers 
et al. 2010; McClintic et al. 2014; Ganoe et al. 2021; Matykiewicz 
et al. 2021). Sites (i.e., cells from this grid) were available for se-
lection if they had at least 5% of their area covered by wetland or 
water and less than 95% of their area covered by water. Due to con-
cerns about excluding streams, which are used by all three species, 
we also included sites that did not meet these criteria but had at 
least a second-order stream present. Because river otters have large 
home ranges (Gorman et al. 2006; Crowley et al. 2017) relative to 
the other species we sampled for, we also imposed a larger grid 
on the sampling area, with sides of 1 km in length, and used this 
larger grid in our analysis of otter data (i.e., surveys from all four 
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small sites that comprised a larger site were counted as detections 
or nondetections of the larger site), resulting in 2301 larger sites.

2.2   |   Landscape Covariates

We initially defined the sampling frame by calculating the propor-
tion of each site covered by each landcover class in the Land Use 
and Landcover (2011) dataset available from RIGIS (RIGIS 2014). 
To understand the relationship between otter occupancy and 
landcover, we used the National Land Cover Database (NLCD; 
USGS  2003; Dewitz  2021). The NLCD has landcover classifica-
tions for several years between 2001 and 2019 using similar meth-
odologies and classifications, which allows valid comparisons 
between different time frames (Dewitz 2021). We reclassified the 
NLCD data from each available year into 5 classes: open water, 
open wetland, forested wetland, urban (any “developed” classi-
fication in the original data), and other. We then calculated the 
proportion of each of the 2301 larger sites covered by each land-
cover class in each year for which NLCD data exist using the ex-
actextractr (version 0.10.0) package (Baston  2023) in R version 
4.2.1 (R Core Team 2022). Since otters are wetland obligates, we 
hypothesized that there would be a positive relationship between 
otter presence and the proportion of the site covered in water and 

wetlands. Although otters can tolerate urban areas (Mech 2003; 
Gallant et al. 2009; DeNeve Weeks 2020; Nixon et al. 2024), urban 
areas present a variety of threats to otters (e.g., vehicle strikes) and 
urban streams may have fewer prey species available (e.g., Johnson 
et al. 2013; Monteiro Pierce et al. 2020; but see Meng et al. 2002); 
these threats may not be adequately captured by other variables in 
our model, so we expected a negative relationship between otter 
presence and the proportion of a site classified as urban.

River otters use both fresh and salt-water areas, but salt-water 
areas of Rhode Island are often very different in both their 
abiotic (i.e., many areas have high salinity or significant wave 
action) and biotic features, so river otter use may be different 
between salt and freshwater areas. Because the NLCD does not 
distinguish between fresh and salt water, we used the RIGIS 
2011 data to create an indicator variable that was equal to 1 for 
sites that contained salt water, intertidal rivers and creeks, salt 
marsh, or intertidal areas, and 0 otherwise. Additionally, we 
included an indicator of whether the site contained a second-
order or greater stream, which we expected would be used by 
river otters as a corridor for movement but which was not always 
large enough for a pixel in the NLCD raster to be classified as 
water or wetland. To understand patterns of river otter intensity 
of use that may not be apparent from landcover associations, 

FIGURE 1    |    Maps of the study area within Rhode Island, USA. (A) shows the location of Rhode Island within the continental USA (within the red 
rectangle). (B) shows the 0.25 km2 sites available for detection-nondetection sampling of river otters, (C) shows the km2 sites used in the integrated 
species distribution model, and (D) shows the locations of centroids of 0.25 km2 sites surveyed.
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4 Animal Conservation, 2025

we also included an effect of watershed; although many of the 
differences between watersheds in Rhode Island are evident in 
the landcover classifications, other patterns of high or low river 
otter use may help focus conservation efforts or future research.

River otters may respond to aspects of habitat quality that are 
not captured by landcover covariates, such as water quality and 
prey availability. The state of Rhode Island monitors for water 
quality in many ponds and streams throughout the state, and re-
cords of the results of this monitoring are available in the RIGIS 
Rivers and Streams (RIGIS 2023b) and RIGIS Lakes and Ponds 
(RIGIS 2023a) datasets. These data include the designated use 
for each water body (e.g., fish and wildlife habitat, drinking 
water supply) and list any impairments that prevent the water 
body from achieving the standards required for its designated 
use. We used these listed impairments to generate water qual-
ity variables reflecting whether the site contained a water body 
that did not meet water quality standards due to the presence 
of elevated levels of lead (Pb), mercury (Hg), other metals (i.e., 
aluminum, iron, copper, zinc, and cadmium), polychlorinated 
biphenyls (PCBs), or non-native plants; due to low levels of dis-
solved oxygen (DO2) or benthic invertebrates; or due to the pres-
ence of fecal indicator bacteria (coliform bacteria or Enterococcus 
spp). We also included an indicator of whether the site contained 
a water body that had been stocked with hatchery-raised trout. 
We expected that river otters would respond negatively to the 
presence of elevated levels of metals and PCBs because many 
of these contaminants bioaccumulate and can reach concentra-
tions at which they are likely to be harmful in aquatic predators 
(Kimber and Kollias  2000; Sleeman et  al.  2010; Peterson and 
Schulte 2016; Crowley et al. 2018; Huang et al. 2018; Wainstein 
et al. 2022). We expected lower river otter intensity of use at sites 
with low DO2 and few benthic invertebrates because these can 
impact populations of fish and shellfish that otters rely on as 
prey; similarly, we expected higher river otter intensity of use 
at sites that contained water bodies stocked with trout since 
these fish could represent a food subsidy. We expected higher 
river otter intensity of use at sites with elevated fecal indicator 
bacteria; although otter presence cannot be reliably inferred by 
fecal indicator bacteria (Oliveira et al. 2017), areas with elevated 
fecal indicator bacteria may indicate areas near point sources 
of sewage discharge or persistence of indicator bacteria in the 
intestines of fish (Devane et  al.  2020). High concentrations of 
fish would likely indicate good habitat for otters, and the point-
source discharges may come with other nutrient inputs (Carey 
and Migliaccio 2009), which may serve to concentrate fish in a 
small area (McCallum et al. 2019). We expected that river otter 
intensity of use would be lower at sites with water bodies that 
contained non-native plants, as these may lead to lower levels of 
native prey species to which river otters are adapted; however, 
the data contained no indication of the type of non-native plants 
present.

2.3   |   Data Collection

2.3.1   |   Detection-Nondetection Surveys

We stratified our sampling by watershed and randomly selected 
150 sites within each watershed and surveyed as many as we 
could access. We surveyed the Pawcatuck River, Block Island 

Sound, and Quinebaug River watersheds in 2021, Pawtuxet 
River and Narragansett Bay watersheds in 2022, and Blackstone 
River, Woonasquatucket River, and Moshassuck River water-
sheds in 2023. Each year, we selected 150 sites in each water-
shed. Sites were surveyed once in winter (January–April) and 
once again in summer (June–August) to increase the number of 
independent surveys of each site.

We surveyed for river otters on foot and kayak by searching for 
otter sign along wetland areas of each site. Two observers were 
present on each survey, in which they recorded the time and 
sign type of each river otter sign encountered (i.e., scat, latrines, 
chewed fish or shells, or slides). Surveys continued until the ob-
servers had covered all the accessible wetland areas in the site. 
We used these data to generate detection-nondetection records 
for each survey.

We expected that river otter detection would be more difficult in 
sites surveyed by kayak since latrines were often high enough 
on the banks to make them hard to see from a kayak. We also 
considered the influence of weather on river otter detection; 
weather variables were obtained using the openmeteo package 
(version 0.2.4) in R (Pisel 2023) to access the Open-Meteo API 
(Zippenfenig  2023). We used the first recorded location of an 
observer in a site as the time and location for the openmeteo 
query and obtained the temperature and cloud cover at the start 
of the survey (rounded to the nearest hour) as well as the total 
precipitation in the previous 24 h. We expected lower detection 
after heavy precipitation and on cloudy days since precipitation 
could either cover up (in the case of snow) or wash away (in the 
case of rain) river otter signs, and cloud cover may reduce visibil-
ity. If detection was dramatically different in summer or winter, 
or if detection was lower on particularly cold days, we would 
expect temperature at the start of the survey to be related to de-
tection. We matched the GPS locations of each observer, taken 
once per minute, to the RIGIS land use and landcover (2020) 
dataset to calculate the proportion of time the observer spent in 
wetlands, water, or urban areas (RIGIS 2022). We expected that 
areas with high hypothesized river otter occupancy might have 
larger populations and thus more sign available for detection, so 
we expected higher detection in wetlands and water and lower 
detection in urban areas (i.e., impervious surfaces).

2.3.2   |   Roadkill Data

Roadkill data consisted of locations and dates of otters found 
dead along roads from 1999 to 2020. Data were reported to state 
biologists by other Rhode Island Department of Environmental 
Management (DEM) employees and law enforcement on an op-
portunistic basis when they found roadkilled river otters. We 
assigned each location to its corresponding site and treated the 
number of roadkilled otters in a site and year within the ISDM 
(described in full below) as the result of a binomial thinning of 
the intensity of otter use in that site and year.

Roadkill is necessarily restricted to roads, and may be more 
likely to occur on larger roads. Road segments were calculated by 
splitting the road centerlines in the RIDOT Roads (RIGIS 2016) 
dataset available in RIGIS where those segments intersected the 
boundaries of our sites. Because speed limits in rural areas of 
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Rhode Island are often high enough for roadkill to be a threat 
even on small roads, we considered any road with a Federal 
Highway Administration Functional Classification system clas-
sification of less than 7 (local) to be a major road. As well as the 
density of major roads, we included the effects of the presence of 
arterial roads and of freeways, as these are likely to have more 
daily traffic and higher speeds than the other roads in our set.

2.3.3   |   Latrine Locations

State biologists recorded locations of river otter latrines in 
Rhode Island from 1999 to 2008. Latrines are areas used for 
defecation, rolling, and grooming, and are visited repeatedly by 
otters, whether individually or in groups (Rostain et  al.  2004; 
Green et  al.  2015); since otter latrines are easily identified by 
the presence of large amounts of scat, researchers have used la-
trines as indications of otter presence for decades (Greer 1955; 
Melquist and Hornocker  1983; Dubuc et  al.  1990; Newman 
and Griffin  1994; Ben-David et  al.  1998; Swimley et  al.  1998; 
Jeffress, Paukert, Sandercock, and Gipson  2011; Crowley 
et al. 2012; Holland et al. 2019). Researchers initially recorded 
latrines during surveys for beaver presence, while later addi-
tions included latrines found during other field work or reported 
by trappers. Most latrines were recorded while biologists were 
kayaking along rivers or streams, so we expected latrine detec-
tion to be higher in areas with second-order or greater streams. 
We also calculated the distance from the center point of each 
site to the nearest boat launch because we expected observers 
to be more likely to record latrines in locations they could eas-
ily access. Because many latrines were detected during beaver 
surveys, we included an indicator of whether the watershed in 
which the site is located was surveyed for beaver in a given year 
in the model of latrine detection.

The original intent when recording latrine locations was to re-
survey them periodically, but only some latrines were re-visited. 
We treated each resurveyed latrine as a single-visit detection-
nondetection survey with a constant probability of detection. 
Latrines were counted as redetected if researchers found fresh 
river otter sign at the same latrine site in a different year and 
were considered nondetected if the latrine could not be found or 
if the sign there was estimated to be older than a year.

2.4   |   Data Analysis

We developed an ISDM in which the distribution of river ot-
ters across the landscape in a given year was given by an in-
homogeneous Poisson point process (Fletcher Jr. et  al.  2019). 
ISDMs link the intensity of use (λ) of a species at a site to two 
different detection processes: presence-only data and detection-
nondetection data. The number of presence-only points in a site 
follows a Poisson distribution with a mean of b * λ (Koshkina 
et al. 2017), where b is the probability of detecting the species 
in presence-only datasets. Detection-nondetection data require 
conversion from intensity of use to presence or absence (Z) of 
the species at the site, which follows a Bernoulli distribution 
with the probability of (1 − e−�). Detection or nondetection of 
the species then follows a Bernoulli distribution with probabil-
ity Z*p, where p is the detection probability. In our model, the 

basic ISDM described above is extended to incorporate multiple 
data types and to allow the intensity of use at a site to change 
between years.

In this model, the intensity of river otter use at site i and year w 
follows a Poisson distribution with an expectation of λ where 
log

(

�i,w
)

= � × xi,w, where xi,w is a vector of site and year variables 
associated with the coefficients �. Site and year variables in-
cluded the proportion of the site covered by water, by wetlands, 
and by urban areas, the presence of water bodies with impair-
ments such as metals, whether the site contained a water body 
stocked for trout, the presence of a second order or larger stream, 
the presence of salt water, watershed, and a time trend (Tables 1 
and 2). We included a linear time trend for intensity of use be-
cause a trend in � is an important indication of conservation sta-
tus but many years had relatively few observations, such that we 
considered more complex time effects unlikely to be estimable. 
This intensity of river otter use was then multiplied by bL

i,w
, the 

probability of latrine detection, and bR
i,w

, the probability of de-
tecting roadkill, to obtain the expected number of each type of 
point; e.g., the expected number of roadkill in a site and year 
is �i,w x bRi,w. We linked these probabilities to logit-linear models, 
as logit

(

bL
i,w

)

= �L × xL
i,w

 and logit
(

bR
i,w

)

= �R × xR
i,w

, such that they 
are dependent on site and year variables in the design matrix 
x, which are associated with the vector of coefficients �L and �R. 
Variables in the latrine model included distance to a public boat 
launch, presence of second order or larger streams, the presence 
of salt water, whether a beaver survey was conducted in that 
watershed and year, and a time trend; variables in the roadkill 
model included the density of roads, the presence of freeways, 
the presence of arterial roads, and a time trend (Table  3). We 
included a time trend for detection in both presence-only data-
sets because sampling effort was higher in earlier years in the 
dataset. In each year, a site was either used by river otters or 
not, given by Zi,w ∼ Bernoulli

(

1 − e−�i,w
)

. At sites used by river ot-
ters in a year, the probability of detecting them in the detection-
nondetection surveys was given by yi,w ∼ Bernoulli

(

pi,w
)

 where 
logit

(

pi,w
)

= �D × xD
i,w

, such that the probability of detection is 
dependent on site, year, and survey-specific variables (Table 3). 
Variables in the detection-nondetection submodel included ob-
server, the time that the observer spent in water, in wetland, and 
in urban areas, the temperature at the start of the survey, the 
cloud cover at the start of the survey, the total precipitation in 
the 24 h prior to the start of the survey, and whether the survey 
was done on foot or by kayak (Table 3). Note that we included 
observer effects in xD

i,w
 using effect coding, such that we estimate 

a grand mean across all observers with observer effects as a dif-
ference from the grand mean. Given that a site was used by river 
otters in a year and that an attempt was made to relocate a pre-
viously detected latrine, the probability of detecting it was given 
by yr

i,w
∼ Bernoulli

(

pr
i,w

)

 where logit
(

pr
i,w

)

= �rD.

Our model allows river otter occupancy to change across 
years through the linear time trend and by way of the land-
cover variables hypothesized to impact river otter occupancy 
changing. Although the actual relationship between time and 
river otter intensity of use may be more complex than a trend, 
this allowed us to include an effect of time while introducing 
relatively little complexity. Our presence-absence data were 
collected in two seasons (summer and winter), but we did not 
retain the seasonal structure in our analysis because the other 
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6 Animal Conservation, 2025

data sources were not structured in the same way and because 
attempting to split the years into seasons would have further 
reduced the available data to estimate intensity of use in each 
season. Our model therefore assumes that the site is closed to 
changes in river otter intensity of use within a year but can 
change between years. Further, we assume there is a static 
relationship in the response of river otters to the landcover 
variables (i.e., temporal stationarity). We see this as reason-
able because our variables are available at a relatively coarse 
scale and the expected responses (e.g., a positive response to 
open water) are related to fundamental characteristics of river 
otter ecology (Melquist et  al.  2003). Furthermore, given the 

sparse presence-only data, this assumption was necessary to 
ensure parameter estimation convergence. NLCD data were 
not available for every year, so it is possible that changes in 
landcover between years could drive changes in river otter in-
tensity of use before the landcover changes were detected, but 
overall landcover change was small, so we expect such errors 
to be minimal.

We implemented this model in a Bayesian context using 
prior distributions intended to be relatively uninformative 
(Northrup and Gerber 2018). We used normal priors on each 
β and logistic priors on each 𝜶. For logistic priors, the location 

TABLE 1    |    Site-level covariates on river otter intensity of use in Rhode Island, USA, between 1999 and 2023, predicted effects of these covariates, 
probability of support for predictions, and the 95% highest posterior density interval (HDPI) of the coefficient for each covariate. Estimates are on the 
log scale and from an integrated species distribution model.

Site-level covariate Description

Predicted 
effect on 
otter use

Probability 
of supporta 95% HPDI

Water Proportion of site covered by 
water in NLCD datab

Positive 0.969 (−0.00186, 0.236)

2nd order stream Presence of a second-order or larger stream 
in RIGIS freshwater rivers and streams data

Positive 1.00 (0.477, 0.979)

Urban areas Proportion of site covered by 
urban areas in NLCD datab

Negative 0.00 (0.206, 0.421)

Salt water Presence of salt water, estuaries, or tidal 
rivers and streams in RIGISc 2011 data

Negative 0.548 (−0.540, 0.490)

Wetland Proportion of site covered by open wetlands 
or forested wetlands in NLCD datab

Positive 1.00 (0.197, 0.371)

Non-native plants Presence of a waterbody with a water quality 
impairment for presence of non-native plants

Negative 0.00 (0.240, 0.799)

Benthic invertebrates Presence of a waterbody with a water quality 
impairment for lack of benthic invertebrates

Negative 1.00 (−1.50, −0.462)

Trout Presence of a waterbody that 
is stocked with trout

Positive 0.953 (−0.0475, 0.706)

Dissolved oxygen Presence of a waterbody with a water quality 
impairment for low levels of dissolved oxygen

Negative 0.476 (−0.540, 0.545)

Lead Presence of a waterbody with a water 
quality impairment for elevated lead

Negative 0.003 (0.143, 0.782)

Mercury Presence of a waterbody with a water 
quality impairment for elevated mercury

Negative 0.542 (−0.323, 0.290)

Other metals Presence of a waterbody with a water quality 
impairment for elevated levels of other metals 
(Cadmium, aluminum, zinc, copper, and iron)

Negative 0.989 (−0.931, −0.0559)

PCBs Presence of a waterbody with a water 
quality impairment for presence of PCBs

Negative 0.607 (−0.902, 0.680)

Fecal indicator bacteria Presence of a waterbody with a water 
quality impairment for presence of 
Enterococcus or coliform bacteria

Positive 0.999 (0.104, 0.506)

Time trend A linear time trend None NA (−0.118, −0.0312)
aCalculated as the proportion of posterior samples in which the coefficient was estimated in the same direction as the prediction.
bNational Land Cover Database (NLCD) data was taken from the closest year to the date of the survey or the presence-only data point's collection.
cRhode Island Geographic Information Systems.
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7

parameter was 0 and the scale parameter 1. Most normal pri-
ors had a mean of 0 and a variance of 1; exceptions were the 
intercept for river otter intensity of use, β0, which had a mean 
of −0.367 (corresponding to a probability of occupancy of 0.5) 
and a variance of 0.25 and the time trend for intensity of use, 
which had a mean of 0 and a variance of 1/25 (thus, when the 
effect of the time trend is largest at the end of the study pe-
riod, the prior is the same as the prior for other effects on in-
tensity of use). We fit models with Markov chain Monte Carlo 
(MCMC) methods in JAGS (version 4.3.1; Plummer  2003) 
via the runjags (version 2.2.2-4; Denwood  2016) package in 
R (version 4.4.0). We report coefficient estimates as posterior 
medians (e.g., �) with 95% highest posterior density intervals 
(HPDI) and we estimated the probability of support for each 
prediction by calculating the proportion of posterior samples 
in which the coefficient was estimated in the same direction 
as the prediction; a probability of > 0.90 indicates strong statis-
tical support and > 0.70 but less than 0.90 indicates moderate 
support, and a probability > 0.50 but less than 0.70 indicates 
weak support. Probabilities of support less than 0.5 indicate 
no support for the predicted effect. All effects in the model are 
reported in the tables, but only moderate and strong effects are 
reported in the text.

3   |   Results

3.1   |   Detection-Nondetection Surveys

We surveyed 274 0.25 km2 sites in 230 larger (1 km2) sites 
across 3 years, resulting in 919 surveys. The number of sur-
veys per site varied; some 1 km2 sites were visited only once, 
and one site was surveyed 11 times, with an average of 4 sur-
veys per site. River otters were detected on 70 surveys across 
46 sites.

We found that detection in these surveys varied widely by ob-
server (and variation among observers was larger than differ-
ences due to landscape or weather variables); αD

observer
 for the 

observer least likely to detect otters was estimated at −1.04 
(difference from grand-mean across observers; HPDI = (−2.61, 
0.295)), while αD

observer
 for the observer most likely to detect 

river otters was estimated at 1.84 (HPDI = (0.998, 2.69)). The 
estimated effects of landcover on detection were smaller but 
were estimated more precisely than observer effects; river 
otter detection was higher when the observer spent more time 
in wetland (αD

wetland
 = 0.280, HPDI = (−0.0858, 0.652)), water 

(αDwater = 0.195, HPDI = (−0.223, 0.614)), or urban (αD
urban

 = 0.163, 
HPDI = (−0.165, 0.471)) areas (Figure  2). Our predictions of 
higher river otter detection when observers spent more time 
in water and wetlands were supported (moderate support for 
water; strong support for wetlands) but our prediction of lower 
detection in urban areas was not (Table 3). We found that river 
otter detection was higher during surveys with more cloud 
cover (αD

cloud
 = 0.327, HPDI = (−0.0221, 0.667)), and higher 

temperatures (αDtemp = 0.112, HPDI = (−0.217, 0.443)); detec-
tion was lower when the survey was done by kayak (αD

kayak
 = 

−0.248, HPDI = (−1.00, 0.497)).

3.2   |   Roadkill Surveys

Within our study area, 105 roadkilled river otters were detected 
in 92 sites, with at least one detection in every year from 1999 
to 2020. Roadkill detections were more frequent earlier in 
the dataset (Figure  3). We found limited evidence for higher 
roadkill detection in areas with higher road density (�R

density
 = 

1.02, HPDI = (−1.77, 4.27)), and no evidence that roadkill de-
tections were higher in sites with freeways or arterial roads 
(Table 3 and Figure 4a). Roadkill detection decreased over time 
(αR

trend
 = −0.196, HPDI = (−0.679, 0.327); Figure 4a). Parameter 

uncertainty (e.g., HPDIs) associated with roadkill detection 
was much larger than those associated with detection in the 
detection-nondetection surveys (Table 3).

3.3   |   Latrine Surveys

Within our study area, 366 river otter latrines were detected 
in 253 sites, with most detections occurring between 1999 
and 2007 (Figure  3). Latrines were more likely to be detected 
in areas with second order or greater streams (αLstream = 1.21, 
HPDI = (−1.99, 4.73)); (Table  3 and Figure  4b). We found lim-
ited support for higher detection in areas closer to public boat 
launches (αL

launchdistance
 = −0.371, HPDI = (−2.38, 2.17)) and 

in watersheds and years in which beaver surveys occurred 
(αL

beaver
 = 0.506, HPDI = (−2.63, 3.89)). Latrine detection de-

creased over time (αL
trend

 = −0.262, HPDI = (−0.713, 0.241)). As 
with roadkill detection, there was more parameter uncertainty 
(e.g., wider HPDIs) for latrine detection than those for detection 
in the detection-nondetection surveys.

In total, 73 latrine locations were re-surveyed in a subsequent year, 
and latrines were located and still in use at 53 of these. Most resur-
veys occurred in 2003 (38 resurveys) or 2007 (21 resurveys). The 
naïve probability of redetecting latrines was 0.726 (53 redetected 
latrines out of 73 attempted redetections), while the estimated 
probability of redetecting latrines (pr) was 0.774 (HPDI = (0.650, 
0.872)), suggesting that some sites at which a redetection was at-
tempted were no longer predicted to support river otter occupancy.

TABLE 2    |    Estimated coefficients on river otter use associated with 
each watershed in the study in Rhode Island, USA, between 1999 and 
2023. Effects represent differences from the grand mean, which had 
a median of 0.276 with a highest posterior density interval (HPDI) of 
(−0.474, 1.07). Estimates are on the log scale and from an integrated 
species distribution model. Median refers to the posterior median for 
each coefficient.

Watershed Median 95% HPDI

Block Island Sound −0.157 (−0.404, 0.0788)

Blackstone 0.0584 (−0.308, 0.409)

Narragansett −0.284 (−0.573, −0.00286)

Pawcatuck −0.352 (−0.586, −0.129)

Pawtuxet 0.656 (0.477, 0.829)

Quinebaug 0.901 (0.637, 1.17)

Woonasquatucket-
Moshassuck

−1.10 (−2.01, −0.235)
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8 Animal Conservation, 2025

3.4   |   River Otter Intensity of Use

River otter use was higher in areas with a second order or 
greater stream (�stream 0.720, HPDI = (0.477, 0.979)), with more 
wetland (�wetland = 0.285, HPDI = (0.197, 0.371)), water (�water 

= 0.118, HPDI = (−0.00186, 0.236)), or urban (�urban = 0.312, 
HPDI = (0.206, 0.421)) land cover, at sites containing waterbod-
ies with impairments due to non-native plants (�NNP = 0.519, 
HPDI = (0.240, 0.799)), lead (�Pb = 0.463, HPDI = (0.143, 0.782)), 
or fecal indicator bacteria (�FIB = 0.309, HPDI = (0.104, 0.506)) 

TABLE 3    |    Site- and survey-level covariates used to model river otter detection in Rhode Island, USA, between 1999 and 2023, predicted effects 
of these covariates, probability of support for predictions, and the 95% highest posterior density interval (HPDI) of the coefficient for each covariate. 
Estimates are on the logit scale and from an integrated species distribution model.

Covariate Description

Predicted 
effect on otter 

detection Submodel
Probability 
of supporta 95% HPDI

Urban Proportion of time 
the observer spent 

in urban areas

Negative Detection-nondetection 0.158 (−0.165, 0.471)

Water Proportion of time the 
observer spent in water

Positive Detection-nondetection 0.817 (−0.223, 0.614)

Wetland Proportion of time 
the observer spent 

in wetlands

Positive Detection-nondetection 0.932 (−0.0858, 0.652)

Temperature Temperature in 
Celsius at the start 

of the survey

Positive Detection-nondetection 0.749 (−0.217, 0.443)

Cloud cover Proportion of the sky 
covered by clouds at 

the start of the survey

Negative Detection-nondetection 0.033 (−0.0221, 0.667)

Precipitation Total precipitation in 
the previous 24 h

Negative Detection-nondetection 0.439 (−0.364, 0.450)

Kayak Whether the survey 
was done by kayak

Negative Detection-nondetection 0.744 (−1.00, 0.497)

Observer Random effect 
of observer

Variable Detection-nondetection Variedb

Distance to launch Distance from point 
to nearest public 

boat launch

Negative Latrine points 0.619 (−2.38, 2.17)

Stream Presence of a second-
order or larger stream

Positive Latrine points 0.793 (−1.99, 4.73)

Beaver Survey Whether beaver 
surveys occurred in the 

watershed that year

Positive Latrine points 0.636 (−2.63, 3.89)

Salt Presence of salt water, 
estuaries, or tidal 
rivers and streams 
in RIGIS 2011 data

Negative Latrine points 0.440 (−3.15, 3.65)

Freeway presence Presence of 
freeways in site

Positive Roadkill points 0.625 (−2.67, 3.84)

Arterial presence Presence of arterial 
roads in site

Positive Roadkill points 0.678 (−2.47, 3.92)

Road Density Density of all road 
segments in site

Positive Roadkill points 0.764 (−1.77, 4.27)

aCalculated as the proportion of posterior samples in which the coefficient was estimated in the same direction as the prediction.
bSee Table S1.
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9

and at sites containing water bodies that were stocked with 
trout (�trout = 0.332, HPDI = (−0.0475, 0.706)). River otter in-
tensity of use was lower in sites with impairments due to lack 
of benthic invertebrates (�benthic = −0.974, HPDI = (−1.50, 
−0.462)), or presence of other metals (�othermet = −0.488, 
HPDI = (−0.931–0.0559)). We found no support or limited sup-
port for effects of impairments due to low dissolved oxygen, 
presence of mercury, or presence of PCBs, and in sites with salt 
water (Table 1 and Figure 5). We also found that intensity of use 
varied widely by watershed (Table 2). Our predictions of higher 
river otter occupancy in areas with more water and wetlands or 
containing water bodies with elevated levels of fecal indicator 
bacteria were strongly supported, as was our prediction of lower 
occupancy in areas with high concentrations of other metals 
and with low levels of benthic invertebrates, but our prediction 
of lower river otter occupancy in urban areas, areas with high 
concentrations of lead, and areas with non-native plants were 
not supported (Table 1). We found that predicted river otter oc-
cupancy decreased over time (�trend −0.0750, HPDI = (−0.118, 
−0.0312); Figure 5). There was uncertainty in the magnitude of 
decline (Figure 6), but the estimated trend was negative in all 
but 26 of the 40,000 posterior samples, providing unambiguous 
support for the direction of the trend.

4   |   Discussion

Landcover and human pressure on ecosystems have changed 
considerably in the last several decades, including in our 
study area, where urbanization has continued (Novak and 
Wang  2004) and human impacts dramatically change local 
aquatic communities through increased nutrient loads (e.g., 
Vadeboncoeur et al. 2010; Hollister et al. 2021, but see Savoie 
et al. 2017). Rhode Island continues to experience shifts away 
from industrial and agricultural land use and towards forested 
and residential land use. The resulting impacts on water qual-
ity and landscape features are complex; with some sources of 
contaminants (e.g., heavy metals from industrial processes) 
reduced and others (e.g., fecal indicator bacteria from waste-
water; nitrogen from fertilizers on residential lawns) increas-
ing or mixed. Our results show that river otter responses to 
these changes are also complex, but that the combined impact 
is a negative trend in river otter occupancy in our study area 
(Figures  6 and 7). We found that river otter occupancy has 
declined in Rhode Island over the past two decades despite the 
protected status of the species in the state. A site with mean 
level of each landcover covariate, no salt water or streams, and 
no impairments or fish stocking would have seen a decline 
in predicted occupancy from 0.736 in 1999 to 0.198 in 2023. 
Although the magnitude of decline is uncertain, the negative 
trend was unambiguous, providing clear evidence that the oc-
currence of river otters has declined between 1999 and 2023.

FIGURE 2    |    Posterior estimates of coefficients (𝜶D) on detection (p) 
in detection/nondetection surveys from the integrated species distribu-
tion model of river otters in Rhode Island, USA. The circles indicate the 
posterior median, while the thin lines show the 95% highest posterior 
density intervals (HPDI) and the thick lines the 50% HPDI. Coefficients 
are on the logit scale; positive numbers indicate a higher probability 
of detection. Landcover effects (water, urban, and wetland) are effects 
of the amount of time the observer spent in each landcover category 
during their survey. Observer effects are the difference between an indi-
vidual observer and the grand mean of all observers; observer six is sev-
eral observers with very few observations pooled together. Temperature 
refers to the temperature at the site at the start of the survey, cloud cover 
to the proportion of the sky covered by clouds at the start of the survey, 
and precipitation to the total water equivalent of all precipitation in the 
24 h preceding the start of the survey. Landcover and weather variables 
were scaled to have a mean of 0 and a standard deviation of 1. Kayak is 
an indicator variable equal to one if the survey was conducted by kayak 
and zero if by foot.

Parameter Estimate

Otter detection coefficients in designed surveys (�D)

−4 −2 0 2 4 6

Kayak
Precipitation
Cloud cover

Temperature
Wetland

Urban
Water

Observer 6
Observer 5
Observer 4
Observer 3
Observer 2
Observer 1

Intercept

FIGURE 3    |    Histogram of river otter roadkill (a) and latrine (b) loca-
tion detections by year in Rhode Island, USA, from 1999 to 2020. Note 
that the y-axis limits differ between subplots.
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10 Animal Conservation, 2025

Past declines in otter abundance have been linked to water qual-
ity, changes in aquatic communities, and trapping (Melquist 
et al. 2003); none of these causes seems likely to drive the declines 
we observed as harvest of river otters is illegal in Rhode Island, 
water quality in our study area has not declined dramatically 
(Briggs and Feiffer 1986; Nimiroski et al. 2008; Savoie et al. 2017; 
Hollister et al. 2021), and fish biomass in coastal waters has in-
creased during our study period (Innes-Gold et al. 2020). Some 
aspects of poor water quality in our study area, such as the pres-
ence of elevated lead levels and fecal indicator bacteria, were pos-
itively associated with river otter intensity of use, suggesting that, 
at the levels measured in our data sources, these do not limit river 

otter use. The presence of fecal indicator bacteria could reflect 
inputs from wastewater treatment facilities, which may have 
other impacts on local ecosystems, such as nitrogen inputs and 
seasonally stable temperatures, that increase productivity and 
benefit otter prey species (McCallum et al. 2019). Lead is toxic to 
river otters, and the mechanism that would lead to higher otter 
use in areas with elevated lead levels is unclear. We found that 
river otter intensity of use is higher in sites stocked with trout 
and lower in sites that contain water bodies that are impaired by 
a lack of benthic invertebrates, reflecting that intensity of use is 
related to prey availability. Our results suggest that river otters 
are tolerant of a range of water quality conditions provided prey 
availability remains high; we were unable to find any research 
to suggest a decline in overall prey availability in our study area. 
Evaluating prey abundance may be an important focus for river 
otter conservation in Rhode Island.

River otter occurrence was driven by landcover patterns as well 
as water quality. River otter intensity of use was higher in areas 
with second-order or greater streams and in sites with more 
water and more wetland landcover, an expected pattern given 
the species' reliance on aquatic habitats (e.g., Gallant et al. 2009; 
Jeffress, Paukert, Sandercock, and Gipson  2011; Hanrahan 

FIGURE 4    |    Posterior estimates of coefficients (𝜶) on detection for 
otter roadkill (bR, subplot a) and latrines (bL, subplot b) from the inte-
grated species distribution model of river otters in Rhode Island, USA. 
The circles indicate the posterior median, while the thin lines show the 
95% highest posterior density intervals (HPDI) and the thick lines the 
50% HPDI. Coefficients are on the logit scale; positive numbers indicate 
a higher probability of detection. Salt is a categorical variable equal to 1 
if the site contained salt water in the RIGIS 2020 landcover dataset and 
0 otherwise; stream is a categorical variable equal to 1 if the site had a 
ssecond-orderor greater stream; beaver surveys is a categorical variable 
equal to 1 if researchers surveyed for beaver colonies in the watershed 
the site was located in during the year the latrine was found; pthe res-
ence of roads is a categorical variable equal to 1 if roads were present. 
Road density is the total length of road segments of the respective type 
in a site, and distance to launch is the distance from the center point of 
a site to the nearest public boat launch; these variables were scaled to 
have a mean of 0 and a standard deviation of 1. The time trend is the 
yearly change in detection probability.

Parameter Estimate

Otter roadkill detection coefficients (�R)

−5 0 5 10 15

Road Density

Arterial presence

Freeway presence

Time trend

Intercept

a

Parameter Estimate

Otter latrine detection coefficients (�L)

−5 0 5 10 15

Beaver surveys
Stream

Salt
Distance to launch

Time trend
Intercept

b
FIGURE 5    |    Posterior estimates of coefficients (β) on site-level otter 
intensity of use (λ) from the integrated species distribution model of riv-
er otters in Rhode Island, USA. The circles indicate the posterior medi-
an, while the thin lines show the 95% highest posterior density intervals 
(HPDI) and the thick lines the 50% HPDI. Coefficients are on the log 
scale; positive numbers indicate higher intensity of use. Salt is a categor-
ical variable equal to 1 if the site contained salt water in the RIGIS 2020 
landcover dataset and 0 otherwise; stream is a categorical variable equal 
to 1 if the site had a second order or greater stream. Wetland, urban, 
and water covariates are the proportion of the site covered by the corre-
sponding landcover class. The time trend is the yearly change in inten-
sity of otter use. Lead, mercury, other metals, PCB, non-native plants, 
and fecal indicator bacteria covariates are indicators equal to 1 if the site 
contained a waterbody with an impairment due to the presence of those 
features (fecal indicator bacteria were Enterococcus and coliform bac-
teria; other metals were cadmium, aluminum, copper, iron, and zinc). 
Benthic invertebrates and dissolved oxygen covariates are equal to 1 if 
the site contains a waterbody with an impairment due to low levels of 
benthic invertebrates and dissolved oxygen, respectively.

Parameter Estimate

Otter intensity of use coefficients (�)
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et al. 2019; Holland et al. 2019; Powers et al. 2021). We predicted 
lower occurrence in sites with more urban areas, as previous 
studies have shown that otters avoid areas of high road density 
(Robitaille and Laurence 2002; Powers et al. 2021), avoid devel-
oped areas (Hanrahan et al. 2019; Holland et al. 2019), or are 
not responsive to road density (Jeffress, Paukert, Sandercock, 
and Gipson 2011), but in our study, river otters were more likely 

to occur at sites with more developed land. A pattern of higher 
occurrence near areas of high human activity is typical in spe-
cies distribution models that do not account for imperfect de-
tection (e.g., Fithian et al. 2015); however, this pattern exists in 
our study despite including covariates in all detection submodels 
intended to account for this, suggesting that the bias towards 
urban areas is not an artifact of a mis-specified detection model.

FIGURE 6    |    Predicted river otter occupancy (a) by year at a site with mean values for all landcover covariates, no impairments, no salt, and no 
stream present; (b) by the proportion of the site covered by urban areas at a site with mean values for all other landcover covariates, no impairments, 
no salt, and no stream present in 1999; (c) by the proportion of the site covered by wetlands at a site with mean values for all other landcover covari-
ates, no impairments, no salt, and no stream present in 1999; (d) by site type for sites with and without waterbodies stocked with trout and impair-
ments due to lack of benthic invertebrates, at sites with mean values for landcover covariates, no stream present, no salt water, and no other impair-
ments. The solid center line of plots (a–c) represents the posterior median while the shaded areas indicate 95% from the integrated species distribution 
model of river otters in Rhode Island, USA. The circles indicate the posterior median, while the thin lines show the 95% highest posterior density 
intervals (HPDI). The central circle in plot (d) represents the posterior median while the error bars represent 95% HPDI.
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Although river otters were more likely to use sites with more 
urban landcover, their fitness may be lower in urban areas (i.e., 
these areas may serve as an ecological trap for river otters), 
particularly given the large size of the roadkill dataset used 
in this study. Roadkill is a significant source of mortality for 
many mammals (Moore et  al.  2023), including otters (Hauer 
et al. 2002; Jancke and Giere 2011), and as urban areas expand, 
river otters in Rhode Island may encounter more roads and more 
cars on existing roads, making movement hazardous.

As Rhode Island is the 2nd most densely populated state in the 
United States, river otters in our study area may not be able to 
avoid human development as easily as river otters in midwest-
ern states (Jeffress, Paukert, Sandercock, and Gipson  2011; 
Hanrahan et al. 2019; Holland et al. 2019) or western New York 
(Powers et al. 2021). Many of the urban areas in Rhode Island 
are coastal, and river otter preference for urban sites could re-
flect higher prey availability in estuaries and brackish or salt 
water; although we included a salt water effect in the model, it 
may not fully reflect the ecological differences between inland 
streams that are cut off from the ocean by dams and rivers and 

streams that are connected to the ocean. Notably, detection was 
also higher in urban areas for the detection-nondetection sur-
veys as well. This suggests that river otter sign is particularly 
easy to find in urban landscapes, perhaps because the wetlands 
in urban areas are condensed into smaller areas with better 
defined boundaries, whereas rural wetlands (and especially 
coastal wetlands) are expansive, with fewer obvious places to 
check for sign; it may also suggest that river otter populations 
are higher in urban areas and sign is more common.

Our work demonstrates the utility of ISDMs in incorporating 
multiple sources of data of varying quality, which allows us to 
leverage historical data to reveal declines in a protected species. 
However, it also demonstrates some of the challenges. Many of 
the coefficients associated with the detection of latrines or road-
kill were estimated with large uncertainty, which makes mean-
ingful inference on those variables difficult. This issue could be 
mitigated by collecting better information on survey effort for 
presence-only data. The covariates we included in the models 
of latrine and roadkill detection were based on variables we pre-
dicted to be important, but none of them were collected at the 

FIGURE 7    |    Predicted probability of river otter occupancy (ψ) in 2023 (A), standard deviation of predicted river otter occupancy in 2023 (B), 
change in the intensity of river otter use from 1999 to 2023 (C), and the standard deviation of change in the intensity of river otter use from 1999 to 
2023 (D) across the study area in Rhode Island, USA from the integrated species distribution model. Probability of river otter occupancy (A) is shown 
as the median posterior estimate of probability of occupancy, with yellow shading indicating areas of higher predicted occupancy and blue areas of 
lower predicted occupancy. Intensity of river otter use (λ) is unbounded and therefore exhibits more variation than river otter occupancy (ψ); areas of 
yellow shading in (B) represent locations with higher standard deviations in intensity of use among posterior samples. Change in river otter intensity 
of use (c) is shown as the posterior median of the difference between intensity of use in 2023 and 1999 with yellow shading indicating areas where 
otter use declined the least over the time period of the study and blue shading indicating areas where use declined the most. Unshaded areas were 
not included in the study.
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same time as the presence-only records. Complete records of 
how many attempts to find otter latrines were made in a given 
season could help correct temporal biases, and better records of 
the roadkill reporting process and of traffic volumes could help 
correct both temporal and spatial biases.

Another source of uncertainty in this study is the lack of tempo-
ral overlap between presence-only and detection-nondetection 
data. Although the submodels still share information through 
the landcover and water quality covariates, our power to dis-
criminate between detection and occurrence would be in-
creased if there were years in which both types of sampling were 
done. If managers intersperse detection-nondetection surveys at 
regular intervals (e.g., every 3 or 4 years) along with collecting 
presence-only data, their power to estimate trends in occurrence 
will increase. Previous studies (e.g., Jeffress, Paukert, Whittier, 
et al. 2011; Powers et al. 2021) have demonstrated the effective-
ness of sign surveys focused on bridges and other obvious points 
where river otters cross roads; these features are typically easy to 
sample and are a natural area of focus for detection-nondetection 
surveys. Alternatively, managers could record when and where 
they are actively searching for latrines, allowing a subset of la-
trine locations to be converted into detection points and generat-
ing some points where latrines were sought but not found. Either 
approach would be inexpensive and effective at generating data 
on a comparable scale to the detection-nondetection data used 
here (i.e., ten surveys a year would result in as many detection-
nondetection sites as we surveyed).

Effective conservation of a species requires an understanding 
of its distribution. Detecting changes in distribution can be 
very important both in alerting practitioners to a conservation 
need and in accurately assessing where to direct resources. 
Here, we demonstrate the utility of combining historical 
presence-only data and data from designed studies in an inte-
grated model, revealing declining occupancy in river otters in 
Rhode Island. These models may be applicable to many other 
species for which historical data exist and could significantly 
advance managers' understanding of the conservation needs of 
wildlife in their area.
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